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Quantum Computing

� replace bit with qubit: two state quantum system, states � 0 � , � 1 �

� quantum data states obey axioms of quantum mechanices

– Single qubit state space H1 � � � 0 ��� � � 1 ��
� � � 2

– �ψ � � � 0 ��	 i � 1 �

– n-qubit state space Hn � 
 n
1H1 � � b̄ an n bit string � � b̄ �

� � � 2n

– two-qubit example: �ψ � � � 00 ��	 � 11 �

� Both qubits in same state; equal chance of 0, 1
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Quantum Computing Cont.

� density matrix ρ: Hermitian matrix describing stochastic dispersion of
pure states �ψ �

– Choice of diagonalizations specifies mixture

– For �x � �ψ � pure, unmixed density matrix is ρ � �ψ �� ψ � � xx̄t � xx �

– All states pure for rest of talk

� quantum computations: apply 2n � 2n unitary matrix u to n-qubit data
strings, i.e. �x �� u �x

Thm: (’93, Bernstein-Vazirani) The Deutsch-Jozsa algorithm proves quan-
tum computers would violate the Church-Turing hypothesis.
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Example: F the Two-Qubit
Fourier Transform in � � 4 �

� Relabelling � 00 ���� � � � 11 � as � 0 ���� � � � � 3 � , the discrete Fourier transform F :

� j �

F� �

1
2

3

∑
k� 0

�	� � 1 
 jk
� k � or F � 1

2

��

1 1 1 1
1 i � 1 � i
1 � 1 1 � 1
1 � i � 1 i

��

� one-qubit unitaries: H � � 1 
� 2 
 1 1
1 � 1

, S � � 1 
� 2 
 1 0
0 i

F �

� �
� � �����

� �����
� �����

�
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Tensor (Kronecker) Products of Data,
Computations

� � φ � � � 0 ��	 i � 1 � , �ψ � � � 0 � � � 1 ��� H1

– interpret � 10 � � � 1 � 
 � 0 � etc.

– composite state in H2: � φ � 
 �ψ � � � 00 � � � 01 ��	 i � 10 � � i � 11 �

� Most two-qubit states are not tensors of one-qubit states.

� If A � α � β
β̄ ᾱ is one-qubit, B one-qubit, then the two-qubit tensor

A 
 B is� A 
 B 
 � αB � βB
β̄B ᾱB

. Most 4 � 4 unitary u are not local.
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Quantum Circuits

� Quantum computation complexity� size of quantum circuit

� Typical choices of gates

– Any two-qubit

– one-qubit, and CNOTs� � b1b2 � �� � b1� b1� b2 
 � 
 ,� � b1b2 � �� �� b1� b2 
 b2 � 
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Quantum Circuits Cont.

� For X � � �� � 0 1
1 0

, sample quantum circuit:

u � ��

0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

�� is implemented by �

� �� �
� �

� good quantum circuit design: find tensor factors of computation u
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Circuit Synthesis by QR Decomposition

� universality argument(1995): circuits for arbitrary u

� observation (2000): argument implements QR decomposition

– In general, m � qr, with q unitary, r upper-triangular

– q is made of Givens rotations

– m unitary demands r � q � m unitary, i.e. r diagonal

� two-qubit Givens rotation: G10

�

11 acts on � 10 � and � 11 � by 2 � 2 matrix v

G10

�

11 �

�

v

� 1 0
0 v
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QR reduction of 4 � 4 unitary
��

� � � �

� � � �

� � � �

� � � �
��

G10 � 11� � ��
� � � �

� � � �

� � � �

0 � � �
��

G01 � 10� �

��
� � � �

� � � �

0 � � �

0 � � �
��

G10 � 11� � ��
� � � �

� � � �

0 � � �

0 0 � �
��

G00 � 01� �

��
� � � �

0 � � �

0 � � �

0 0 � �
��

G10 � 11� G01 � 10� � ��
� � � �

0 � � �
0 0 � �

0 0 0 �
��
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Circuits for Givens Rotations

� Barenco et al.: G10
�

11 = 2 CNOTs + 4 (variable) one-qubit gates

�
�

�

�

� ��� �
�

� ��� �
�

�

– a� b� c and d are computed from v

� Givens rotation G01

�

10 on � 00 � , � 01 � is the conjugation of G10

�

11 by X 
 1

G00

�

01 � � X 
 1 
� topC-v 
� X 
 1 
 � v 0
0 1
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Summary of QR Circuit Synthesis

� Breakthrough: Every unitary u possesses a quantum circuit.

� Roughly, Givens rotations build circuit entry by entry.

� This design philosophy often ignores underlying structure.

� General philosophy recurs in circuit design:

– Choose matrix decomposition

– Produce circuits factorwise
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Cosine-Sine Decomposition

Cosine-Sine Decomposition factors a 2n � 2n unitary u:

u � v1 0
0 v2

c s

� s c
v3 0
0 v4

� v1� v2� v3� v4 are� 2n 
 2 
 � � 2n 
 2 
 unitary

� c � diagonal� cos t0� cos t1��� � � cos t2n � 2 � 1 


� s � diagonal� sin t0� sin t1��� � � sin t2n � 2 � 1 


Remark: Decomposition of unitary matrix, not arbitrary matrix

More structure?
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Cosine-Sine Decomposition Cont.

v1 0
0 v2

� v1 0
0 v1

1 0
0 v �

1v2

�

v1 v �1v2

�

� Side matrices of C.S.D. do not change top qubit

� Good choice (?) when measurement of single qubit is output

� q-ph/0303039 (B-,Markov): Circuit for cosine-sine matrix
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The Magic Basis of Two-Qubit State Space

� The magic basis of phase shifted Bell states is
� ���

� ���
�

��� � � � � � 00 ��	 � 11 � 
 
� 2
��� � � � � i � 00 � � i � 11 � 
 
� 2

��� � � � � i � 01 ��	 i � 10 � 
 
� 2

��� 	 � � � � 01 � � � 10 � 
 
� 2

These are maximally-entangled states. Global phases are important.

Theorem (Lewenstein, Kraus, Horodecki, Cirac 2001)
Consider a two-qubit computation U with det� U 
 � 1

� Compute matrix elements in the magic basis

� � All matrix elements are real 
�
 � � U � A 
 B 
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The Two-Bit Entangler

� Entangler unitary E takes computational basis to the magic basis:

� 00 � �� ��� � � , � 01 � �� ��� � � , � 10 � �� ��� � � , � 11 � �� ��� 	 �

E � � 2
2

��
1 i 0 0
0 0 i 1
0 0 i � 1
1 � i 0 0

��

Corollary Consider u 4x unitary, det u � 1. Then

� u � A 
 B 

 � � EuE � is real orthogonal 
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An Example of the Isomorphism

We choose some orthogonal u, det� u 
 � 1.

u � � 2
2

��
1 0 0 1
0 1 � 1 0
0 1 1 0

� 1 0 0 1

��

Then EUE � is a tensor of one-qubit computations:

EuE � � � 2
2

��

1 0 � 1 0
0 1 0 � 1
1 0 1 0
0 1 0 1

�� � � 2
2

1 � 1
1 1 
 1

Column by column, this amounts to application of the magic basis.
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Two-Qubit Canonical Decomposition

Two-Qubit Canonical Decomposition: Any u a four by four unitary admits a
matrix decomposition of the following form:

u � � b 
 c 
 a� d 
 f 


for b 
 c� d 
 f are tensors of one-qubit computations and a � EdE � for a
diagonal matrix d � ∑11

j� 00 eiθ j � j �� j � , det d � 1.

Note that a applies relative phases (complex multiples) to the magic basis.

Circuit diagram: For any u a two-qubit computation, we have:

u �

c

b

a
d

f
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Applications of the Canonical Decomposition
Two-qubit Circuit Design: [(F.Vatan, Colin Williams), (G.Vidal, C.Dawson), (V.Shende,
I.Markov, B-)]

� Choose a universal gate library

� In two-qubits, provably optimal or near optimal circuits

– Implement b � c, d � f as tensor

– Choose method for circuit for a

Entanglement Capacities: (J. Zhang, J. Vala, S. Sastry, KB Whaley) Only a block may
entangle � ψ � ; other factors are local.

Quantum Circuit Structure: (V.Shende, B-, I.Markov) Recognize u with particularly sim-

ple circuits; produce circuits with special case a
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Computing the
Canonical Decomposition

Step #1: Compute the unitary SVD of v unitary:

v � o1do2� d diagonal� o1� o2 real orthogonal

Due to a theorem, this decomposition exists.

Step 1a: Suppose v � o1do2, and label p � o1dot
1. Then v � p� o1o2 
 and

p � pt, p unitary. Moreover, we may compute p2 � vvt � o1d2ot
1.

Remark: For p2 � a	 ib, 1� p2

� p �
�

2�
� a � ib � � a � ib �
�

� a
2 � b2

� � i � ba � ab � . Thus
the real and imaginary parts of p2 are real symmetric matrices that com-
mute, hence o1 exists.
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Computing the
Canonical Decomposition Cont.

Step 1b: Diagonalize to find d2. Write p � o1dot
2, with determinants of o1

and d both one.

Step 1c: Then v � � o1dot
1 
� o1o2 
 for o2 � ot

1p � v.

Step #2: Canonical decomposition results by translation through entan-
glers. If E � vE � o1do2, then

v � � Eo1E � 
� EdE � 
� Eo2E � 
 � � b 
 c 
 a� d 
 f 

WARNING! Entanglers do not function properly on inputs with det �

� 1.
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Entanglement Monotones

� Entangled �ψ � : any non-local �ψ � , i.e. not tensor (Kronecker) product

� Entanglement monotone: functions that measure how far away a state

�ψ � is from local (full Kronecker product)

� Monotones usually map to

�

0� 1

�

, must return 0 on local states, may
return zero on nonlocal states.

– only detect certain entanglement types

– types thought to grow exponentially with n
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Concurrence

� concurrence entanglement monotone: � iY � 0 � 1
1 0

, with S � 
 n
1� � iY 


a 2n � 2n complex matrix. For �x � �ψ � , we have Cn� �ψ � 
 � � xtSx � .

� S � 
 n
1� � iY 
 is antidiagonal, St � S

� 1 � � � 1 
 nS

� 4-qubit examples

– maximal 1 on �GHZ � � � 1 
� 2 
� � 00� � � 0 ��	 � 11� � � 1 � 

– vanishes on entangled �W � � � 1 
 4 
� � 0001 �	 � 0010 �	 � 0100 �	 � 1000 � 
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Concurrence Form

Definition: The concurrence bilinear form Cn : Hn � Hn � � is given by
Cn� �x� �w 
 � �xtS �w.

Remark: So Cn� �x 
 � �Cn� �x� �x 
 � .

2-qubits: C2� �x� �w 
 � �

x1 x2 x3 x4

�
��

0 0 0 1
0 0 � 1 0
0 � 1 0 0
1 0 0 0

����

w1
w2
w3
w4

��
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Generalized Entanglers

4-qubit entangler:

E0� � 1 � � 2 �
� �������������������������

�

1 i 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 i 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 i 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 i 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 i 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 i 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 i 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 i
0 0 0 0 0 0 0 0 0 0 0 0 0 0 � 1 i
0 0 0 0 0 0 0 0 0 0 0 0 1 � i 0 0
0 0 0 0 0 0 0 0 0 0 1 � i 0 0 0 0
0 0 0 0 0 0 0 0 � 1 i 0 0 0 0 0 0
0 0 0 0 0 0 1 � i 0 0 0 0 0 0 0 0
0 0 0 0 � 1 i 0 0 0 0 0 0 0 0 0 0
0 0 � 1 i 0 0 0 0 0 0 0 0 0 0 0 0
1 � i 0 0 0 0 0 0 0 0 0 0 0 0 0 0

� �������������������������
�
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Concurrence Canonical Decomposition
Theorem (B-, Brennen) Let v be a 2n � 2n unitary, n even. Then v � k1ak2
where the factors have the following properties.

� k j � E0o jE

�

0 , where o j orthogonal, j � 1� 2

� kt
jSk j � S, i.e. Cn� k �x� k �w 
 � Cn� �x� �w 
�� �x� �w in n-qubit data space Hn

� For a diagonal d, the central factor a � E0dE �

0 applies relative phases
to the concurrence-one columns of E0

Algorithm: Computable in same manner as two-qubit canonical decompo-
sition. Given scaling of matrix sizes, numerical issues arise in � 12 qubits.
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Application: Concurrence Capacity

Definition: The concurrence capacity of a given n-qubit quantum compu-
tation v is defined by κ� v 
 � max

�

Cn� v �ψ � 
 ; Cn� �ψ � 
 � 0� � ψ �ψ � � 1

�

.

Corollary: Let u � k1ak2 be the concurrence canonical decomposition of
some 2n � 2n unitary u. Then κ� u 
 � κ� a 
 .

� Calculation: For n � 2p, most a have κ� a 
 � 1 as p � ∞.

� Conclusion: Most large unitaries are arbitrarily entangling with respect
to the (single) entanglement monotone Cn.
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On-going Work

� Most large u in even qubits carry some �ψ � of concurrence 0 to u �ψ � of
concurrence 1.

– Compute numerical examples?

– How entangled are such �ψ � with respect to other monotones?

� Do the factors have reasonable quantum circuits?

� Odd n: a decomposition exists, do not know algorithm to compute it.

� Analyze particular u from well-known quantum algorithms
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Ongoing Work: Numerical Issues

� Algorithm for� n � 2p 
 -qubit canonical is similar to n � 2

– Diagonalize commuting real 2n � 2n matrices a, b, with same
orthogonal matrix o

– Otherwise several matrix multiplications

– 60-qubits: can’t distinguish 260 eigenvalues with 16 digits

� n-odd: complicated decomposition exists, no algorithm
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